
T60S/T86S Closed Stepper Driver User Manual

Shenzhen Rtelligent Technology Co., Ltd

Revision History

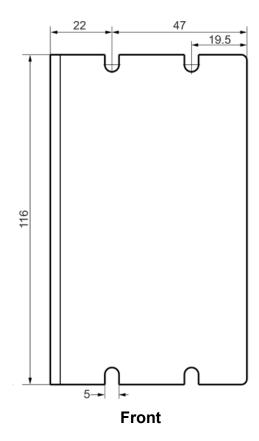
Date	Version	Description
2024.09.10	V4.0	Version 4 product update
2024.10.12	V4.1	Chapter 4: Modify table title in 4.4.1

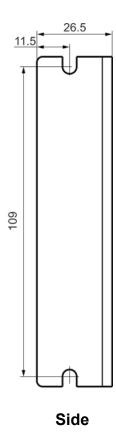
1. Feature

- New generation closed loop control algorithm
- ◆ Three pulse command forms: pulse + direction, double pulse, orthogonal pulse
- ◆ Independent 5V, 24V control signal interface
- ◆ Brake interface: direct connection
- Isolated input and output
 - 3 isolated inputs
 - 1 isolated output

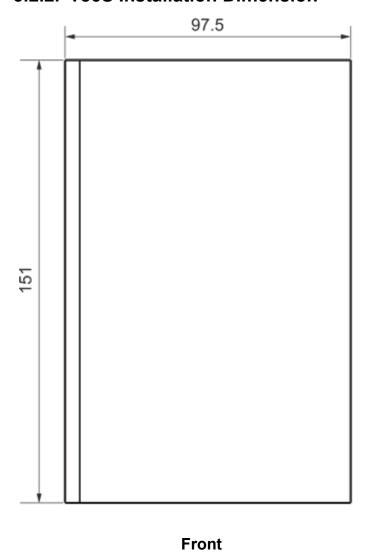
2. Product Comparison

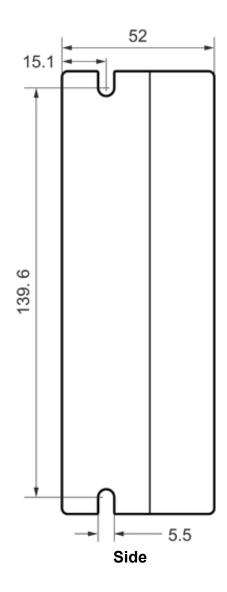
Feature	T60S	T86S		
Voltage range	18~50VDC	28~110VDC		
AC Input	Not Supported	20~80VAC		
Maximum current	6000mA	8000mA		
Brake interface	Brake direct	connection		
Debugging Interface	Serial port TTL 3.3V			
Extension DIP switch	8-bit			
Alarm output	1			
Pulse command voltage	5V, 24V independent interface			
Pulse bandwidth setting	Software setting			
Reverse direction	DIP setting			
Command filtering	DIP setting			
Pulse mode setting	DIP setting: PUL+DIR, CW+CCW			
Working mode	DIP setting: Open loop/closed loop			


3. Installation

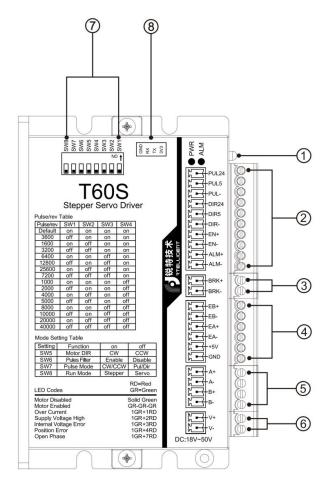

3.1. Installation Requirement

- When installing, please place the driver vertically or horizontally, with the front facing forward and the top facing upward to facilitate heat dissipation.
- During assembly, be careful to prevent drilling shavings and other foreign matter from falling into the driver
- Please use M3 screws to fix during installation.
- ◆ When there is a vibration source near the installation (such as a drilling machine, etc.), please use a vibration absorber or install an anti vibration rubber gaske.
- When multiple drivers are installed in the control cabinet, please pay attention to leaving enough space for placement to achieve sufficient heat dissipation; If necessary, a cooling fan can be configured to ensure good cooling conditions inside the control cabinet.

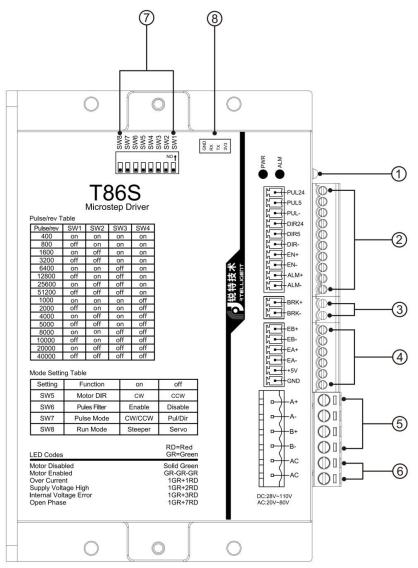

3.2. Installation Dimension


3.2.1. T60S Installation Dimension

3.2.2. T86S Installation Dimension



4. Port, Wiring & Setting


4.1. Port Function Description

4.1.1. T60S

Number	Part Name	Description
(1)	Status indicator	LED lights are used to display the operating status and
	Status illulcator	fault status of the driver
	Control signal interfess	Pulse, direction, enable signal inputs and alarm signal
2	Control signal interface	output interface
3	Brake Interface	For connecting the brake cable
4	Encoder cable Interface	For connecting the encoder cable
(5)	Motor power cable interface	Connect A+, A-, B+, B- phases
6	Power supply input interface	Input DC voltage 18~50V
(7)	DIP switch	Used to set common parameters such as pulse/revolution,
	DIP SWITCH	pulse mode, motor running direction, etc
	Daharaina intenface	Used to connect to the debugging software for parameter
8	Debugging interface	debugging

4.1.2. T86S

Number	Part Name	Description
1	Status indicator	LED lights are used to display the operating status and
	Status indicator	fault status of the driver
	Control sign of interfers	Pulse, direction, enable signal inputs and alarm signal
2	Control signal interface	output interface
3	Brake Interface	For connecting the brake cable
4	Encoder cable Interface	For connecting the encoder cable
(5)	Motor power cable interface	Connect A+, A-, B+, B- phases
6	Power supply input interface	Input voltage 28~110VDC or 20V~80VAC
(7)	DIP switch	Used to set common parameters such as pulse/revolution,
	DIP SWITCH	pulse mode, motor running direction, etc
	Daharaina intenface	Used to connect to the debugging software for parameter
8	Debugging interface	debugging

4.2. Power Supply & Motor

	Identification T60S T86S			-	
			Name	Description	
Power	V+	AC	Power positive pole	The polarity of the T60S product cannot be reversed, otherwise the product will be	
supply	V-	AC	Power negative pole	damaged. 2. The T86S products can be connected to both AC and DC.	
	В	-	Two phase stepper motor B- (Black)		
Motor	B-	+	Two phase stepper motor B+ (Green)	Wiring according to the color of the	
IVIOLOI	A-		Two phase stepper motor A - (Blue)	motor wire.	
	A+		Two phase stepper motor A+ (Red)		
	GN	ID			
	+5	V	RS485 B	+5V is only for encoder use and	
Encoder	EA	٨-	Encoder differential A-	should not be used for other loads, otherwise it may damage the driver.	
Lilcodei	EA	\ +	Encoder differential A+	The maximum output current is	
	EB-		Encoder differential B-	100mA.	
	EB+		Encoder differential B+		
	BRK-		Brake negative pole	The brake is directly connected to the driver without the need for	
Brake	BRI	K+	Brake positive pole	additional relay control, making closed-loop control more reliable	

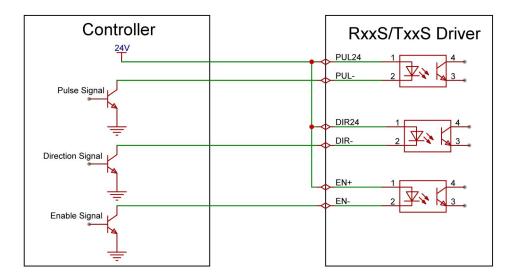
4.3. Control Signal Interface

	T60S/T86S identification	Name		Description
	PUL24	24V pulse positive pole interface	1.	Separate interfaces for 5V and
	PUL5	5V pulse positive pole interface		24V pulse, direction control
	PUL-	Pulse negative pole		signals.
	DIR24	24V direction positive pole interface	2.	Maximum voltage for 24V
	DIR5	5V direction positive pole interface		interface is 28V.
Control	DIR-	Direction negative pole	3.	The maximum voltage for the 5V
signal	EN+	Enable positive pole		interface is 7V.
			4.	EN+and EN - are compatible
	EN-	Enable negative pole		circuits with voltage levels of
_				5~24V.
	ALM+	Alarm output positive pole	5.	ALM+and ALM - are optocoupler
	ALM-	Alarm output negative pole		isolated collector open circuits.

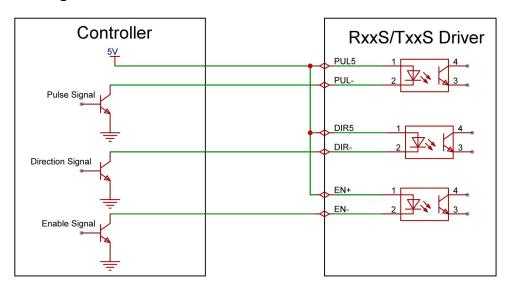
4.3.1. Wiring Requirements

To prevent interference with the driver, it is recommended to use shielded cables for control signals, and short-circuit the shielding layer to the ground cable. Unless otherwise specified, the shielding cable of the control signal cable should be grounded at one end: the upper computer end of the shielding cable should be grounded, and the driver end of the shielding cable should be suspended.

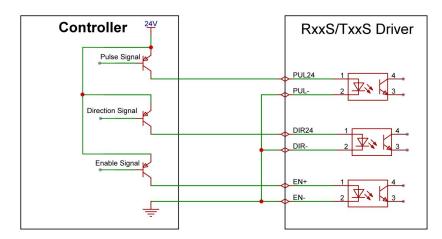
Only grounding at the same point is allowed within the same machine. If it is not real grounding, it may cause serious interference, and the shielding layer should not be connected at this time.

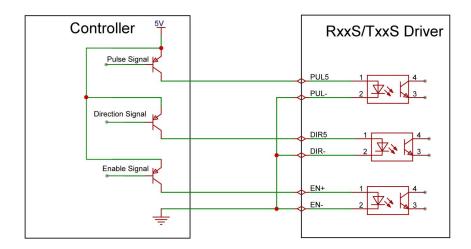

Pulse and direction signal lines are not allowed to be wrapped side by side with motor cables. It is better to separate them by at least 10cm, otherwise motor noise can easily interfere with pulse direction signals, causing inaccurate motor positioning, system instability, and other faults

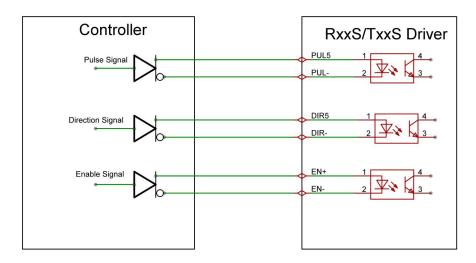
4.3.2. Pulse & Direction Signal


Different from the 5~24V pulse control signal interface circuit or single 5V, single 24V control signal interface used in previous stepper drivers. The T60S and T86S drivers use independent 5V and 24V pulse control signal interfaces to match most control systems on the market. At the same time, it avoids the trouble of connecting additional current limiting resistors.

When the running direction of the motor is inconsistent with the system design, it can be adjusted by extended DIP switch SW5.

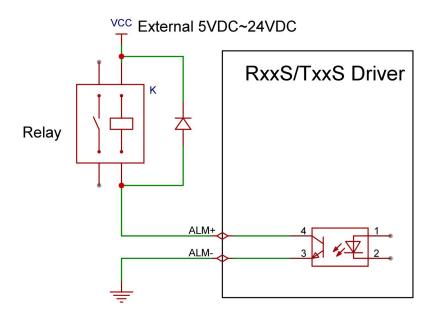

4.3.2.1. NPN single-ended 24V common anode connection


4.3.2.2. NPN single-ended 5V common anode connection


4.3.2.3. PNP single-ended 24V common cathode connection method

4.3.2.4. PNP single-ended 5V common cathode connection


4.3.2.5. Differential connection


4.3.3. Alarm Signal

ALM+, ALM- is an optoelectronic isolated collector open circuit (OC) output, capable of withstanding a maximum voltage of 30VDC and a maximum saturation current of 100mA. When the driver is working normally, the output optocoupler is not conducting.

4.3.3.1. Optocoupler connection

4.3.3.2. Relay connection

4.4. Running Parameters Setting

The T60S and T86S actuators include 8 DIP switches, which are used to set the operating parameters of the stepper motor. Among them, SW1-SW4 are used to set pulse/revolution parameters, SW5 is used to set running direction, SW6 is used to set command smoothing filtering, SW7 is used to set pulse mode, and SW8 is used to set motor running mode.

SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Dula a la constati a constitui a			Running	Command	Dulaa mada	Motor running	
Pulse/revolution setting		direction	smoothing filter	Pulse mode	mode		

4.4.1. Pulse/revolution Setting [SW1~SW4]

Subdivision	Subdivision (pulse/rev)		-		
T60S	T86S	SW1	SW2	SW3	SW4
360	00	on	on	on	on
80	00	off	on	on	on
160	00	on	off	on	on
320	00	off	off	on	on
64	00	on	on	off	on
128	12800 of		on	off	on
256	600	on	off	off	on
720	7200		off	off	on
100	1000		on	on	off
200	2000		on	on	off
400	4000		off	on	off
500	5000		off	on	off
8000		on	on	off	off
10000		off	on	off	off
20000		on	off	off	off
400	000	off	off	off	off

4.4.2. Running Direction Setting [SW5]

Without changing the stepper motor winding connection and control signal settings, the motor's running direction can be changed by setting SW5 to on or off.

The factory default is off.

4.4.3. Command Smoothing Filter [SW6]

DIP SW6 is used to set whether the pulse filtering function of the driver is turned on.

On indicates that the pulse filtering function is turned on.

Off indicates that the pulse filtering function is turned off.

The pulse filtering function is the filtering effect of the driver on the input command. When the filtering function is turned on, the driver will smooth the input pulse command, which can make the motor run more smoothly in acceleration and deceleration, but this will also cause a certain delay in the pulse command

Actual command filtering time = set value * 50us, and the filtering setting value can be changed through software (default is 512).

4.4.4. Pulse Mode Setting [SW7]

Set DIP switch SW7 to select pulse mode. When switch SW7 is set to on, it is in dual pulse mode, and when it is set to off, it is in pulse&direction mode. After changing the pulse mode, please power on the driver again for the settings to take effect

SW7=on: CW & CCW mode

SW7=off: Pulse & Direction mode (factory default)

4.4.5. Motor Running Mode Setting [SW8]

DIP SW8 is used to set the control mode of the driver.

"On" indicates that the input driver is operating in open-loop mode and can be used to test motors.

"Off" indicates a closed-loop mode with normal input.

4.5. Status & Alarm Indicator Lights

- ◆ T60S and T86S drivers include an integrated red and green indicator light for displaying status and errors
- ◆ When the motor is in the enabled state, the green indicator light flashes slowly. When the green light is on for a long time, the motor is not enabled
- ◆ If an error occurs when the red LED flashes, it will be displayed by a combination of flashing red and green lights, as follows:

LE	D status	Driver status		
	Steady green light	Driver is not enabled		
	Flashing green light	Driver works fine		
	1 green, 1 red Driver overcurrent			
	1 green, 2 red	Driver input power overvoltage		
	1 green, 3 red Driver internal voltage error			
	1 green, 4 red	Encoder out-of-voltage alarm		
	1 green, 6 red	Parameter check error		
	1 green, 7 red	Motor phase loss		

5. Communication Protocol

5.1. Modbus/RTU Configuration

- ◆ The serial communication parameters are as follows:
 - (1) Baud rate: 115200
 - (2) Data bits: 8 bit
 - (3) Stop bit: 1 bit
 - (4) Check bit: None
- ◆ TxxS series products currently support the following Modbus function codes:
 - (1) 0x03: Read holding register
 - (2) 0x06: Write single register
 - (3) 0x10: Write multiple registers
- ◆ MODBUS registers start with 0, while in touch screen and PLC, register addresses are typically represented as 400x type, starting with 1.
 - So: PLC address=MODBUS address + 1
- ◆ Register operation type:
 - (1) R: Rad only
 - (2) W: Write only
 - (3) R/W: Read or write
- Data type:
 - (1) SHORT —— 16bit
 - (2) LONG —— 32bit
- ◆ MODBUS defaults to a 16 bit register. Two consecutive registers form a 32-bit data, with low 16-bit data at the beginning and high 1-bit data at the end.

5.2. Register Explanation

5.2.1. Driver Flag Register [0 \sim 1]

5.2.1.1. Alarm Flag Register [0]

Defined all alarm flags for the driver. MODBUS address: 0

15				11	10	9	8
			Reserve				ECDE1
	R	-0			R	-0	
7	6	5	4	3	2	1	0
POSE	MPE	MEM	ОТ	UV	OV	ОС	IVE
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0

BIT	Name	Description
9~15	Reserve	Read always returns 0
		Encoder failure
8	ECDE1	0: Encoder signal is normal
		1: Encoder signal is abnormal
		Tracking error alarm
		No tracking error alarm
		1: Tracking error alarm occurs, the motor cannot follow the encoder normally
		◆ The possible impacts of a tracking error alarm are as follows:
7	POSE	① Position deviation alarm threshold
		② Encoder cable
		③ Motor power cable
		④ Check whether the setting of parameters such as speed and
		acceleration is reasonable
		Motor phase loss alarm
		No alarm
	MPE	1: Alarm occurs
6	MPE	◆ When a phase loss alarm occurs, the driver cannot detect the current of
		the motor winding normally
		① Need to check motor wiring and motor type
		Parameter check error
5	MEM	0: Parameter check is correct
		1: Parameter check error

		Over temperature alarm sign
4	ОТ	0: Driver temperature is normal
		1: The temperature of the internal components of the driver is too high
		Undervoltage alarm flag
3	UV	0: No undervoltage alarm
		1: Driver experiencing undervoltage
		Overvoltage alarm sign
		0: No overvoltage alarm
0	0)/	1: Driver overvoltage occurs
2	OV	◆ Drive overvoltage occurs, check the following:
		① Check the input power supply
		② Check the pump voltage during motor deceleration
		Overcurrent alarm flag
		0: No overcurrent alarm
		1: The driver has triggered an overcurrent alarm
1	ОС	◆ The driver has experienced an overcurrent alarm, and the possible
'		reasons are as follows
		① Short circuit occurs in the motor winding
		② The current set by the driver is too large, causing the motor to burn out
		③ Internal components of the driver are damaged
		Internal voltage error alarm flag
		0: No internal voltage error
0	IVE	1: Internal voltage error
		◆ The internal voltage error alarm of the driver is usually caused by damage
		to the internal components of the driver

5.2.1.2. Driver Status Register [1]

Defined some status flags inside the driver. MODBUS Address: 1

15				11	10	9	8
Reserve				TC	POW	NL	PL
R-0							
7	6	5	4	3	2	1	0
CLAMP	ARRSPD	RDY	HOME	MOV	INPOS	ALM	ENA
R-0	R-0	R-0	R-1	R-0	R-0	R-0	R-1

BIT	Name	Description				
12~15	Reserve	Read always returns 0				
		Torque reaching state				
11	TC	0: The torque has not reached the set value				
		1: The torque reaches the set value				
		Stall detection				
10	STALL	0: During open-loop operation, the motor runs normally				
		1: During open-loop operation, the motor experiences stalling				
		Negative limit effective state				
9	NL	0: Not in the negative limit position				
		1: In the negative limit position				
		Positive limit effective state				
8	PL	0: Not in the positive limit position				
		1: In the positive limit position				
		Motor mechanical brake status				
7	CLAMP	0: The brake is not opened, mechanically locking the motor shaft				
		1: The brake has been opened and the motor can run				
		Whether the motor is running to the set speed				
		0: Speed not reached				
6	ARRSPD	1: The speed has reached				
		◆ In the internal pulse command mode, it is used to indicate whether the				
		motor has reached the set speed				
		Driver ready sign				
		0: Not ready				
		1: Ready				
5	RDY	◆ Usually, when the driver is in the enabled state, it is in the ready state.				
		But during the transition from disable to enable of the motor, it takes				
		100ms to enter the ready state. In addition, automatic parameter				
		recognition and current step testing during power on can cause the				
		motor to be in an unprepared state.				
		Homing sign				
4	HOME	0: Homing not completed				
		1: Homing completed				
		Motor running sign				
_		0: Motor stopped state				
3	MOV	1: The motor is running				
		◆ When the motor is in operation, it cannot respond to new motion				
		commands and can only respond to stop commands.				

		Motor positioning completion sign in closed-loop mode						
2	2 INPOS	0: Positioning not completed						
		1: Positioning Completed						
		Driver alarm flag						
4	1 ALM	0: Driver without alarm						
I		1: The driver has triggered an alarm, please check the register						
		REG_LMCODE (address 0)						
		Driver enable flag						
	FNIA	0: Driver not enabled						
0	ENA	1: The driver has been enabled						
		◆ The default driver is already enabled when powered on						

5.2.2. Input/output status register [2 \sim 7]

5.2.2.1. Input Port Value Register [2]

Used to indicate the value of the current input port. Due to the optoelectronic isolation of the input port, for ease of understanding, the article uses whether the optocoupler is conducting to indicate the status of the input port. MODBUS Address: 2

15							8
			Res	serve			
	R-0						
7	6	5	4	3	2	1	0
Res	Reserve		IN5	IN4	IN3	IN2	IN1
R-0		R-0	R-0	R-0	R-0	R-0	R-0

BIT	Name	Description
6∼15	Reserve	Read always returns 0
		Level status of input port IN6
5	IN6	0: Input port 6 is not conducting
		1: Input port 6 is conducting
		Level status of input port IN5
4	IN5	0: Input port 5 is not conducting
		1: Input port 5 is conducting
		Level status of input port IN4
3	IN4	0: Input port 4 is not conducting
		1: Input port 4 is conducting

		Level status of input port IN3
2	IN3	0: Input port 3 is not conducting
		1: Input port 3 is conducting
		Level status of input port IN2
1	IN2	0: Input port 2 is not conducting
		1: Input port 2 is conducting
		Level status of input port IN1
0	IN1	0: Input port 1 is not conducting
		1: Input port 1 is conducting

5.2.2.2. Current Output Port Value [3]

Output port value register. MODBUS Address: 3

15						8
		Res	erve			
	R-0					
7		4	3	2	1	0
	Reserve		OUT4	OUT3	OUT2	OUT1
	R-0		R-0	R-0	R-0	R-0

ВІТ	Name	Description
4 ∼15	Reserve	Read always returns 0
		Level status of output port 4 (used by other products)
3	OUT4	0: Output port 4 is not conducting
		1: Output port 4 is conducting
		Level status of output port 3 (used by other products)
2	OUT3	0: Output port 3 is not conducting
		1: Output port 3 is conducting
		Level status of output port 2
1	OUT2	0: Output port 2 is not conducting
		1: Output port 2 is conducting
		Level status of output port 1
0	OUT1	0: Output port 1 is not conducting
		1: Output port 1 is conducting

5.2.2.3. Input Port Conduction Edge Latch Register [4]

Every time the port changes from off state to on state, the driver will latch this change. MODBUS Address: 4

15							8
			Res	serve			
R-0							
7	6	5	4	3	2	1	0
Res	Reserve		IN5	IN4	IN3	IN2	IN1
R-0		R-0	R-0	R-0	R-0	R-0	R-0

BIT	Name	Description
6~15	Reserve	Read always returns 0
		Input port IN6 conduction edge latch flag
5	IN6	0: Input port 6 has not experienced any conduction edge
		1: Input port 6 has a conductive edge
		Input port IN5 conduction edge latch flag
4	IN5	0: Input port 5 has not experienced any conduction edge
		1: Input port 5 has a conductive edge
		Input port IN4 conduction edge latch flag
3	IN4	0: Input port 4 has not experienced any conduction edge
		1: Input port 4 has a conductive edge
		Input port IN3 conduction edge latch flag
2	IN3	0: Input port 3 has not experienced any conduction edge
		1: Input port 3 has a conductive edge
		Input port IN2 conduction edge latch flag
1	IN2	0: Input port 2 has not experienced any conduction edge
		1: Input port 2 has a conductive edge
		Input port IN1 conduction edge latch flag
0	IN1	0: Input port 1 has not experienced any conduction edge
		1: Input port 1 has a conductive edge

5.2.2.4. Input Port Shutdown Edge Latch Register [5]

Every time the port changes from on to off, the driver will latch this change. MODBUS Address: 5

15							8
	Reserve						
	R-0						
7	6	5	4	3	2	1	0
Res	Reserve		IN5	IN4	IN3	IN2	IN1
R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

BIT	Name	Description
6∼15	Reserve	Read always returns 0
5	IN6	Input port IN6 shutdown edge latch flag 0: Input port 6 did not experience any pass/fail edges 1: Input port 6 experienced a shutdown edge
4	IN5	Input port IN5 shutdown edge latch flag 0: Input port 5 did not experience any pass/fail edges 1: Input port 5 experienced a shutdown edge
3	IN4	Input port IN4 shutdown edge latch flag 0: Input port 4 did not experience any pass/fail edges 1: Input port 4 experienced a shutdown edge
2	IN3	Input port IN3 shutdown edge latch flag 0: Input port 3 did not experience any pass/fail edges 1: Input port 3 experienced a shutdown edge
1	IN2	Input port IN2 shutdown edge latch flag 0: Input port 2 did not experience any pass/fail edges 1: Input port 2 experienced a shutdown edge
0	IN1	Input port IN1 shutdown edge latch flag 0: Input port 1 did not experience any pass/fail edges 1: Input port 1 experienced a shutdown edge

5.2.2.5. Input Port Conduction Edge Clearing Register [6]

Used to clear the conduction edge flag of the latch. MODBUS Address: 6

15	8							
			Res	serve				
	R-0							
7	6	5 4 3 2 1 0						
Res	Reserve		IN5	IN4	IN3	IN2	IN1	
F	R-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

BIT	Name	Description
6∼15	Reserve	Read always returns 0
5	IN6	Clear the conduction edge latch status flag of IN6 0: No effect 1: Clear the conduction edge latch flag of IN6 port
4	IN5	Clear the conduction edge latch status flag of IN5 0: No effect 1: Clear the conduction edge latch flag of IN5 port
3	IN4	Clear the conduction edge latch status flag of IN4 0: No effect 1: Clear the conduction edge latch flag of IN4 port
2	IN3	Clear the conduction edge latch status flag of IN3 0: No effect 1: Clear the conduction edge latch flag of IN3 port
1	IN2	Clear the conduction edge latch status flag of IN2 0: No effect 1: Clear the conduction edge latch flag of IN2 port
0	IN1	Clear the conduction edge latch status flag of IN1 0: No effect 1: Clear the conduction edge latch flag of IN1 port

5.2.2.6. Input Port Shutdown Edge Clearing Register [7]

Used to clear the off edge flag of the latch. MODBUS Address: 7

15 8 Reserve R-0 3 2 7 0 6 5 4 1 IN6 IN2 IN1 Reserve IN5 IN4 IN3 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

BIT	Name	Description
6∼15	Reserve	Read always returns 0
5	IN6	Clear the off edge latch status flag of IN6 0: No effect 1: Clear the shutdown edge latch flag of IN5 port
4	IN5	Clear the off edge latch status flag of IN5 0: No effect 1: Clear the shutdown edge latch flag of IN5 port
3	IN4	Clear the off edge latch status flag of IN4 0: No effect 1: Clear the shutdown edge latch flag of IN4 port
2	IN3	Clear the shutdown edge latch status flag of IN3 0: No effect 1: Clear the shutdown edge latch flag of IN3 port
1	IN2	Clear the latch status flag of IN2's turn off edge 0: No effect 1: Clear the shutdown edge latch flag of IN2 port
0	IN1	Clear the off edge latch status flag of IN1 0: No effect 1: Clear the shutdown edge latch flag of IN1 port

5.2.3. Current position and speed related registers of the motor [8 \sim 16]

MODBUS address	Attribute	Default value	Range	Description
8	R	0	[0,65535]	Internal pulse mode, current absolute position, low 16-bit
9	R	0	[0,65535]	Internal pulse mode, current absolute position, high 16-bit
10	R	0	[-3000,3000]	Current command speed, signed 16-bit data Unit: RPM
11	R	-	[0,100]	Current bus voltage value Unit: mV
12	R	0	[0,65535]	Closed-loop mode, motor tracking error, low 16-bits Unit: Encoder Resolution
13	R	0	[0,65535]	Closed-loop mode, motor tracking error, high 16-bits
14	R	0	[0,65535]	External pulse counter, low 16-bit
15	R	0	[0,65535]	External pulse counter, high 16-bit
16	R/W	0	[0,1]	Clear external pulse counter Writing 0 has no effect, reading always returns 0 Writing 1 will clear the external pulse counter, and the values of registers 14 and 15 will become 0. Then this register will become 0.

5.2.4. Driver control mode setting [17 \sim 23]

MODBUS address	Attribute	Default value	Range	Description
				Command mode setting register, set the source of pulse commands for the driver
17	R/W 0	[0,1]	0: Internal pulse command	
				1: External pulse command
				0: Waiting state
	18 R/W 0		The driver will restore the bit waiting state after	
			processing any control instructions received.	
18		W 0	[0,6]	1: Fixed length forward rotation
				In relative position mode, the motor runs forward
				according to the 70-74 register parameters.
			In absolute position mode, the operating status is	

				determined based on the current position and the absolute position set at 70-74. 2: Fixed length reversal In relative position mode, the motor operates in reverse according to the 70-74 register parameters. In absolute position mode, the operating status is determined based on the current position and the absolute position set at 70-74. 3: Speed mode, continuous forward rotation The motor accelerates forward according to registers 75 and 77 4: Speed mode, continuous reverse The motor accelerates in reverse according to registers 75 and 77 6: Slow down and stop Position mode, the motor decelerates and stops according to the 71 register Speed mode, the motor decelerates and stops according to the 76 register 9: Trigger homing This register only works when the value of the internal
19	R/W	0	[0,2]	pulse mode register 20 is 0 External pulse command mode setting register 0: PUL+DIR mode: PUL is the pulse input port, DIR is the direction input port 1: Reserved 2: CW+CCW mode: PUL is the CW input signal, DIR is the CCW input signal 3: Orthogonal input mode:
20	R/W	0	[0,5]	Preset application selection for internal pulse mode 0: Communication control: responds to instructions from register 18 1: Reserved, do not use 2: Preset IO control mode 1 start stop + direction 3: Preset IO control Mode 2: forward rotation + reverse rotation 4: Preset IO control mode 3: speed table 5: Preset IO control mode 4: internal position table
21	R/W	0	[0,1]	Motor type setting register 0: Two phase stepper motor

				 1: Three phase stepper motor 2: Five phase stepper motor The TxxS series is a two-phase motor, please do not make any other settings
22	R/W	0	[0,2]	Motor operation mode setting register 0: Open loop operation 1: Servo operation
23	R	0	[0,1]	 Motor direction reverse setting register 0: Default running direction 1: Reverse the direction of motor operation ◆ Due to the direction of the TxxS series being set through SW5, this register is used to display the current settings

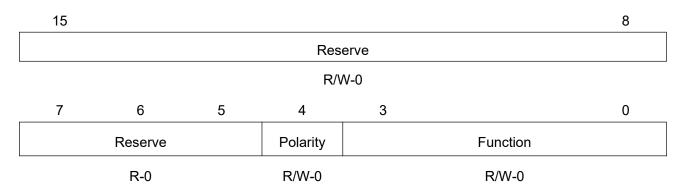
5.2.5. Open Loop Operating Parameters [24 \sim 29]

MODBUS address	Attribute	Default value	Range	Description
24	R	4000	[200,65535]	Display the pulse/revolution of driver runtime Unit: Pulse/rev
25	R	1500	[0,6000]	Display the maximum operating current of the driver Unit: mA
26	R/W	50	[0,100]	Standby current percentage Set the percentage of current relative to operating current when the driver enters standby mode in open-loop operation mode. Unit:%
27	R/W	500	[10,65535]	Standby time setting Set the time after the pulse stops for a certain period of time when the driver enters standby mode during open-loop operation. Unit: ms
28	R/W	512	[1,1024]	Pulse command filter Used for smoothing pulse commands (including internal and external pulses), filtering time = set value * 50us
29	Reserve	-	-	-

5.2.6. Motor & Current Loop Parameters [30 \sim 39]

MODBUS address	Attribute	Default value	Range	Description
30	R/W	0	[0,1]	Auto-PI enable function Driver built-in parameter recognition and gain optimization algorithm. Usually, good results can be achieved. If the customer needs optimization, this feature can be disabled. 0: Do not use auto-PI function 1: Use the auto-PI function
31	R	-	[100,65535]	Automatically recognized resistance value Read the motor winding resistance value automatically recognized by the driver. Unit: mOhm
32	R	-	[1,65535]	Automatically recognized inductance value Read the motor winding inductance value automatically recognized by the driver. Unit: mH
33	R/W	1000	[100,10000]	User set resistance value When the automatic PI function is cancelled, the resistance value set by the user takes effect. Unit: mOhm
34	R/W	1	[1,10]	User set inductance value When the automatic PI function is disabled, the inductance value set by the user takes effect. Unit: mH
35	R/W	200	[0,1000]	Motor torque constant The parameters are only valid when the motor control mode is servo mode two
36	R/W	1000	[200,10000]	Proportional gain of current loop KP in the current loop PI algorithm. When the auto-PI function is enabled, ILOOPKP is automatically generated. When the auto-PI function is disabled, users can modify ILOOPKP.

37	R/W	200	[0,2000]	Current loop integral gain KI in the current loop PI algorithm. When the auto-PI function is enabled, ILOOPKI is automatically generated. When the automatic PI function is disabled, users can modify ILOOPKI
38	R/W	256	[0,1024]	KC in Current Loop PI Algorithm
39	R/W	0	[0,1]	Current step test Writing 0 is no effect, reading always returns 0. Writing 1 will initiate the current loop step test. At this point, the current of the motor winding will first be zero and then increase to 1000mA. Users can view step response through NTConfigurator, manually adjust ILOOPKP and ILOOPKI, and optimize motor response.

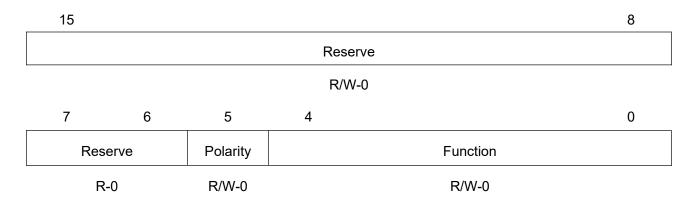

5.2.7. Closed Loop Motor Parameters [40 \sim 49]

MODBUS address	Attribute	Default value	Range	Description
40	R/W	4000	[256,65535]	Encoder resolution The driver is capable of receiving input signals from orthogonal encoders and performing 4th harmonic processing.
41	R/W	2000	[100,65535]	Positioning completion detection mode 0: Immediate mode, at any time as long as the position error is less than the value set in register 42 and continues for the time set in register 43, it is considered to be in place 1: The command stop mode only judges the error after the motor motion instruction stops for more than the time set in register 44.
42	R/W	10	[1,65535]	Positioning completion accuracy Unit: Encoder resolution

43	R/W	50	[1,65535]	Positioning completion duration Set the duration after the motor enters the completion accuracy. Duration = Set value * 50us
44	R/W	100	[1,65535]	The time when the positioning is completed and the detection begins After the driver stops receiving pulses for a set period of time, it begins to determine whether the positioning is complete. Set time = set value * 50us
45	R/W	4000	[0,65535]	Out of tolerance alarm threshold, low 16-bit
46	R/W	0	[0,65535]	Out of tolerance alarm threshold, high 16-bit When both registers 45 and 46 are 0, cancel the out of tolerance alarm.
47	R/W	0	[0,1]	Encoder signal A, B exchange It is possible to match motors from other manufacturers without changing the wiring of the motor and encoder.
48	R	0	[0,65535]	Encoder single-turn count value
49	-	-	-	-

5.2.8. Output Port Parameters [50 \sim 59]

T60S/T86S products do not have output ports, and corresponding setting registers are reserved here for compatibility with other products.


BIT	Name	Description				
5∼15	Reserve	Read always returns 0				
		Output port polarity				
4	Polarity	0: Normally close				
		1: Normally open (default value)				
		Output port function selection				
		0: Normal output, user controlled				
		1: Alarm output, default value for OUT1				
		2: Brake signal output				
		3: In place signal output				
		4: Speed reaches output, OUT2 default value				
		5: Homing completed output				
0∼3	Function	6: Driver ready for output				
		7: Motor stop state output				
		8:: Positive limit output				
		9: Negative limit output				
		10: Power indicator output				
		11: Torque reaches output				
		Other: The input port is not functional and only serves as a				
		regular input port				

Homing completed output:

MODBUS address	Attribute	Default value	Range	Description
50	R/W	1	[0,11]	Output port 1 setting register (other products)
51	R/W	4	[0,11]	Output port 2 setting register (other products)
52	R/W	1	[0,11]	Output port 3 setting register (other products)
53	R/W	4	[0,11]	Output port 4 setting register (other products)

5.2.9. Input Port Parameters [$60{\sim}69$]

The T60S/T86S product includes 3 input ports, each with the same setting method.

BIT	Name	Description	
6∼15	Reserve	Read always returns 0	
		Effective voltage level of input port	
5	Polarity	0: Normally close	
		1: Normally open (default value)	
		Input port function selection	
		0: Pulse Inputs	
		1: Direction input	
		2: Orthogonal encoder A-phase input	
		3: Orthogonal encoder B-phase input	
		4: Motor offline	
		5: Clear fault	
		6: Emergency stop	
0~4	Function	7: Jog forward / start stop	
		8: Jog reverse / direction	
		9: Positive limit input	
		10: Negative limit input	
		11: Zero point signal	
		12: Start homing	
		13: Reverse the direction of motor operation	
		14: Multi-segment speed control 0	
		15: Multi-segment speed control 1	

16: Multi-segment speed control 2
17: Multi-segment speed control 3
18: Multi-segment position control 0
19: Multi-segment position control 1
20: Multi-segment position control 2
21: Multi-segment position control 3
22: USER1
23: USER2
24: USER3
25: USER4
26: USER5
27: USER6
28: USER7
29: USER8
30: USER9
31: USER10
Other: The input port is not functional and only serves as a regular
input port

MODBUS address	Attribute	Default value	Range	Description
60	R/W	0	[0,31]	Input port 1 setting register
61	R/W	1	[0,31]	Input port 2 setting register
62	R/W	4	[0,31]	Input port 3 setting register
63	R/W	7	[0,31]	Input port 4 setting register
64	R/W	12	[0,31]	Input port 5 setting register
65	R/W	11	[0,31]	Input port 6 setting register

5.2.10. Homing Parameters [$80\sim89$]

MODBUS	Attribute	Default	Range	Description
address		value		·
80	R/W	200	[1,3000]	Homing high speed
			[1,000]	Unit: RPM
81	R/W	40	[1,3000]	Homing low speed
			[1,000]	Unit: RPM
82	R/W	100	[0,1000]	Homing acceleration
83	R/W	0	[-32768,32767]	Zero point offset
84	R/W	0	[0,3]	Zero point offset mode setting
85	R/W	0	[17, 35]	Homing mode selection
86	R/W	0	[0,1000]	Emergency stop deceleration
				Stop time of homing process
				Unit: ms
	D.0.4			◆ During the homing process, the driver
07		50	ro 40001	will detect the status of the sensor and
87	R/W		[0,1000]	make corresponding deceleration stop
				actions. After the motor stops, after a
				set time, it will further act according to
				the homing method
				Homing timeout time
	R/W	5000		Unit: ms
				◆ After triggering the homing, if the set
88			[0,65535]	timeout period is exceeded and the
				homing is still not completed, the motor
				will slow down and stop. Waiting for the
				user's next trigger.
	R/W	0		Enable automatic homing upon power on
			[0,1]	0: It is prohibited to reset to homing after
89				powering on
				1: After the driver is powered on, it starts
				homing

5.2.11. Auxiliary Function Register [90~99]

MODBUS address	Attribute	Default value	Range	Description
90	R/W	0	[0,1]	Writing 0 is invalid, reading returns 0 Write 1 to save the current parameters
91	R/W	0	[0,1]	Writing 0 is invalid, reading returns 0 Write 1 to restore factory settings
92	-	-	-	Manufacturer reserves use, user prohibits writing data
93	R	-	-	Driver ID number
94	R	-	-	Driver version number
95	R	-	-	-

5.2.12. Shaft Locking Time [105,106]

When the stepper motor is initially powered on, the position is at a random position, and the initial position between the stator and rotor of the motor needs to be determined by locking the shaft. Locking the shaft through a current ramp can reduce the vibration of the motor during power on and enable.

MODBUS address	Attribute	Default value	Range	Description
105	R/W	16000	[0,65535]	Lock shaft ramp time; unit: 62.5us
106	R/W	4000	[0,65535]	Lock shaft duration; unit: 62.5us

5.2.13. Current & Pulse/revolution Parameters [110~114]

MODBUS address	Attribute	Default value	Range	Description
110	R/W	1500	[0,1500]	Unit mA; The maximum current of T60S/T86S is 1500 When in open-loop mode, this register is used to set the current for open-loop operation mode. In closed-loop mode, this register is used to set the maximum current for closed-loop operation mode.
111	R/W	4000	[200,65535]	Set the pulse required for one rotation of the motor
112	Reserve			
113	R/W	30	[0,100]	Current compensation percentage
114	R/W	30	[0,100]	Current loop gain compensation percentage

5.2.14. Phase Loss Detection [115,116]

Phase loss refers to an abnormality in the winding of a stepper motor, such as a broken wire in the motor winding

The TxxS series products include the connection between the motor winding and the driver circuit board, which monitors the motor winding status through a current detection circuit to ensure that the corresponding current is fed back normally. When a phase loss alarm occurs, the driver shuts off power output and the motor is in a free state.

In some cases, it is impossible to detect phase loss, such as when the driver is powered on for the first time, the current reference value of the B-phase winding is zero. If the B-phase winding breaks, the current detected by the driver is also zero, and the driver cannot give an alarm signal at this time. If a command is sent to make the motor run for more than 2 full steps, the driver can determine the phase loss state of the B-phase winding

MODBU address	Attribute	Default value	Range	Description
115	R/W	0	[0,1]	Enable phase loss detection function 0: Disable phase loss detection function 1: Enable phase loss detection function
116	R/W	50	[0,1500]	Phase loss detection current threshold: mA

5.2.15. PP & PV Mode Motion Parameters [70 \sim 79]

MODBU address	Attribute	Default value	Range	Description
70	R/W	200	[10,1000]	Acceleration during point-to-point motion, unit: R/S ^ 2
71	R/W	200	[10,1000]	Deceleration during point-to-point motion, unit: R/S ^ 2
72	R/W	300	[0,3000]	Maximum speed during point-to-point movement, unit: RPM
73				Pulse command during point-to-point
74	R/W	2000	[-16777216,16777216]	movement, unit: number of pulses P73 is low 16-bit data, P74 is high 16-bit data
75	R/W	60	[10,1000]	Jog acceleration, unit: R/S ^ 2
76	R/W	60	[10,1000]	Jog deceleration, unit: R/S ^ 2

77	R/W	300	[0,3000]	Jog speed, unit: RPM
70	DAA	0	[0.4]	Absolute motion (ABS) / relative motion
78	R/W	U	[0,1]	(INC) motion settings
70	10/		4	Write 1 to clear position counter (registers
79	W 0 1	1	8, 9)	

- The 73 and 74 registers form a 32-bit signed register.
- ◆ In incremental operation mode, the absolute values of 73 and 74 represent the distance traveled, and register 18 is used to write 1 or 2 to control whether the motor runs in the forward or reverse direction.
- ◆ In absolute position mode, the signed data consisting of 73 and 74 represents the target position, and the motor runs to the set distance by writing 1 through 18.

5.2.16. Stall Detection [117~119]

The TxxS series products can operate in open-loop mode, and the driver is equipped with a sensorless stall detection function. Stall refers to the inability of a stepper motor to rotate normally due to external reasons, which can cause the stepper motor to overload, even burn out, and damage mechanical components of the equipment.

The TxxS series products collect real-time current feedback from the motor, estimate the load torque changes of the motor through an observer, and then determine whether the motor is experiencing stalling. Once motor stalling is detected, corresponding protective measures can be taken.

Using sensorless technology for locked rotor detection, the accuracy of the detection depends on the recognition of motor parameters and the correct setting of relevant observer parameters. The default parameter recognition of the driver is usually sufficient for this task. When a misjudgment occurs in practical testing applications, users can turn off this function.

When a stall condition is detected, even if the controller continues to send commands to the driver, the driver will stop running, but the motor will remain in full current state and lock the shaft. At the same time, the red alarm indicator light will remain on, and the alarm output port will output an alarm signal. When the user stops sending pulses, the driver will automatically clear the alarm state and respond to subsequent command signals.

The related registers are as follows:

MODBUS address	Attribute	Default value	Range	Description
117	R/W	0	[0,1000]	Stall detection enable 0 Disable the stall detection function
		-	[0,1000]	0 Enable the stall detection function
118	R/W	180	[0,3000]	Starting speed for stall detection: RPM
119	R/W	2	[0,65535]	Stall detection position error alarm threshold

5.2.17. Low-speed Resonance [120~129]

The TxxS series products provide a harmonic injection algorithm to effectively reduce the low-speed resonance of two-phase stepper motors when operating in open-loop mode.

Usually, the first resonance point speed V1 of a two-phase stepper motor is around 60 RPM, and the second resonance point speed V2 is around 120 RPM. The specific resonance speed of a motor is directly related to its inertia, current, etc., and requires testing to discover the resonance point under different conditions.

The speed relationship between the two resonance points is V2 = 2 * V1. To debug the resonance, the following steps need to be completed:

The first step is to identify two resonance points and determine the velocity range of the resonance region. External pulses or internal pulses can be used to compare and identify the first resonance point, and then maintain the current speed.

Step two, adjust the amplitude and phase of the first resonance point to significantly reduce the resonance of the motor.

Step three, run the motor at the second resonance point and maintain the current speed.

Step four, adjust the amplitude and phase of the second resonance point to significantly reduce the resonance of the motor.

MODBUS address	Attribute	Default value	Range	Description
120		0	[0,1500]	The amplitude of the first resonance point
121		0	[0,1024]	Phase of the first resonance point
122		0		Reserve
123		0	[0,1500]	The amplitude of the second resonance point
124	D 04/	0	[0,1024]	The amplitude of the second resonance point
125	R/W	0		Reserve
126		0	[0,600]	The initial velocity of the first vibration point
127		0	[0,600]	The speed of the first vibration point has ended
128		0	[0,600]	Starting speed of the second vibration point
129		0	[0,600]	The speed of the second vibration point ends

5.2.18. Closed Loop Control Parameters [130~159]

MODBUS address	Attribute	Default value	Range	Description
130		300	[1,5000]	First order speed filtering bandwidth
131		900	[1,5000]	Second order speed filtering bandwidth
132		2000	[1,5000]	Second order speed filtering bandwidth
133~149				Reserve
150		3500	[500,20000]	Position loop Kp
151		0	[0,65535]	Position loop Kd
152	D 04/	40	[10,500]	Speed loop Kp
153	R/W	100	[0,600]	Speed loop KI
154		0	[0,65535]	Acceleration feedforward
155		3000	[0,5000]	Position loop output filtering bandwidth
156		3000	[0,5000]	Position loop differential output filtering bandwidth
157		500	[0,5000]	Speed loop output filtering bandwidth
158		80	[0,100]	Proportion of first-order speed feedback
159		Reserve	Reserve	Reserve

By adjusting the parameters of the position loop and speed loop, it is possible to achieve rigid adjustment of position tracking

5.2.19. Speed Table Parameters Setting [205 \sim 220]

MODBUS address	Attribute	Default value	Range	Description
205	R/W	0		Speed table 1, unit: RPM
206	R/W	20		Speed table 2, unit: RPM
207	R/W	30		Speed table 3, unit: RPM
208	R/W	50		Speed table 4, unit: RPM
209	R/W	60		Speed table 5, unit: RPM
210	R/W	80		Speed table 6, unit: RPM
211	R/W	100		Speed table 7, unit: RPM
212	R/W	150		Speed table 8, unit: RPM
213	R/W	200	[-3000,3000]	Speed table 9, unit: RPM
214	R/W	250		Speed table 10, unit: RPM
215	R/W	300		Speed table 11, unit: RPM
216	R/W	400		Speed table 12, unit: RPM
217	R/W	500		Speed table 13, unit: RPM
218	R/W	600		Speed table 14, unit: RPM
219	R/W	700		Speed table 15, unit: RPM
220	R/W	800		Speed table 16, unit: RPM

6. Application Instructions for Motion Control

6.1. Pulse Control Mode

T60S/T86S series products use pulse + direction control by default when they leave the factory. The related register settings are as follows:

Step	Register address	Unit	Value	Parameter description
1	17		1	Command mode setting register, set the source of pulse commands for the driver 0: Internal pulse command
2	19		0	1: External pulse command External pulse command mode setting register 0: PUL+DIR mode: PUL is the pulse input port, DIR is the direction input port 1: Reserved 2: CW+CCW mode: PUL is the CW input signal, DIR is the CCW input signal 3: Orthogonal input mode
3	110	mA	1500mA	\The current of T60S series drivers has been comprehensively optimized by default. Users can further optimize based on this.
4	111	Pulse/rev	4000	Default control using 4000 pulses per revolution

For details, see section 4.3.2

6.2. Communication Control Mode

In this mode, users can perform homing, positioning, and speed control movements of the motor through communication

Parameter settings for communication control mode:

Step	Register address	Unit	Value	Parameter Description
				Command mode setting register, set the source of pulse
1	1 17		0	commands for the driver
'			0: Internal pulse command	
				1: External pulse command
2	20		0	Preset application selection for internal pulse mode
2	2 20		0	0: Communication control: responds to instructions from

		register 18
		1: Reserved, do not use
		2: Preset IO control mode 1: start stop + direction
		3: Preset IO control mode 2: forward rotation + reverse
		<u>rotation</u>
		4: Preset IO control mode 3: speed table
		5: Preset IO control mode 4: position table
		0: Waiting state.
		The driver will restore the bit waiting state after processing
		any control commands received.
		1: Fixed length forward rotation.
		In relative position mode, the motor runs forward according
		to the 70-74 register parameters.
		In absolute position mode, the operating status is
		determined based on the current position and the absolute
		position set at 70-74.
		2: Fixed length reverse.
		In relative position mode, the motor operates in reverse
		according to the 70-74 register parameters.
		In absolute position mode, the operating status is
		determined based on the current position and the absolute
3	18	 position set at 70-74.
		3: Speed mode, continuous forward rotation.
		The motor accelerates forward according to registers 75
		and 77
		4: Speed mode, continuous reverse.
		The motor accelerates in reverse according to registers 75
		and 77
		6: Slow down and stop.
		Position mode, the motor decelerates and stops according
		to the 71 register
		Speed mode, the motor decelerates and stops according to
		the 76 register
		9: Trigger homing
		◆ This register only works when the value of the internal
		pulse mode register 20 is 0

6.2.1. PP Position Control Mode

The TxxS series products have the function of communication control motor operation with specified pulse stroke. The specific modes and parameters that need to be set are as follows (register addresses are decimal numbers unless otherwise specified or indicated):

Set the value of register address 20 (preset application selection in internal pulse mode) to 0 (communication control, responding to commands at register address 18);

Set the functions of digital input and output ports according to application needs and actual wiring terminals;

(1) Set motion parameters:

Address	Unit	Parameter Description	
70	R/S^2	Acceleration of position mode	
71	R/S^2	Deceleration of position mode	
72	RPM	Speed of position mode	
73	Command Pulse	Number of command pulses for position mode, low 16-bit register	
74	Command Pulse	Number of command pulses for position mode, high 16-bit register	
78	R/S^2	Set position operation mode: R/S^2 0: Incremental 1: Absolute	
79	-	- Write 1 and clear the position counter (registers 8 and 9)	

- (2) Communication given operation command: start point-to-point movement by writing values 1 (fixed length forward rotation) and 2 (fixed length reverse rotation) to register 18 (for detailed commands on this register, please refer to register 18 in "Driver Control Mode Settings [17-23]");
- (3) During operation, if shutdown is required, the value 6 can be written to register 18 (deceleration stop, deceleration is set to the value in register 71)
- ◆ Attention: Changing the acceleration (register 70), deceleration (register 71), and speed (register 72) during the operation of the motor will not immediately respond to these set values by the driver. It is necessary to trigger them by writing the corresponding commands again to register 18.

6.2.2. PV Speed Control Mode

The TxxS series products have the function of controlling the motor's jog operation through communication. The specific modes and parameters that need to be set are as follows (register addresses are decimal numbers unless otherwise specified or indicated):

- (1) Set the value of register address 20 (preset application selection in internal pulse mode) to 0 (communication control, responding to instructions at register address 18);
- (2) Set the functions of digital input and output ports according to application needs and actual wiring terminals;
- (3) Set motion parameters:

Address	Unit	Parameter Description
75	R/S^2	Acceleration of Jog motion
76	R/S^2	Deceleration of jog motion
77	RPM	Speed of jog motion

- (4) Communication given operation command: start point-to-point movement by writing values 3 (continuous forward rotation) and 4 (continuous reverse rotation) to register 18 (for detailed instructions on this register, please refer to register 18 in "<u>Driver Control</u> <u>Mode Settings [17-23]</u>");
- (5) During operation, if shutdown is required, the value 6 can be written to register 18 (deceleration stop, deceleration is set to register 76).

Attention:

- (1) The motor is in operation and only responds to stop commands (deceleration stop or emergency stop). If it is necessary to change the direction of motor operation through instructions, a stop command needs to be sent to wait for the motor to stop before sending a start signal in the other direction.
- (2) During the operation of the motor, the speed can be changed (register 77), and the driver will immediately respond, that is, the motor will immediately run at the set speed value without the need to stop and restart before responding.

6.2.3. Homing

The TxxS series closed-loop stepper driver products have three working modes: automatic power on homing, communication triggered homing, and IO triggered homing. They support the <u>17~30 and 35 homing methods</u> defined in CANOPEN

6.3. Preset IO Control Mode 1: Start Stop+Direction

The TxxS series closed-loop stepper driver products can control the operation of the motor using two IN ports through this mode. One IN terminal is used to control the start/stop of the motor, and the other IN terminal is used to control the direction of operation of the motor. The specific settings are as follows:

Step	Register address	Unit	Value	Parameter Description
				Command mode setting register, set the source of pulse
1	17		0	commands for the driver
'	17		0	0: Internal pulse command
				1: External pulse command
				Preset application selection for internal pulse mode
				0: Communication control: responds to instructions from
			2	register 18
				1: Reserved, do not use
2	20			2: Preset IO control mode 1: start stop + direction
				3: Preset IO control mode 2: forward rotation + reverse
				rotation
				4: Preset IO control mode 3: speed table
				5: Preset IO control mode 4: position table
				PUL- port (IN1) is set to "7-jog forward rotation / start stop"
	60		39	and normally open;
_				Set to 7 when normally closed.
3			40	DIR- port (IN2) is set to "8-jog reverse / direction" and
	61			normally open;
				Set to 8 when normally closed.
	75	R/S^2	60	Acceleration of jog motion
4	76	R/S^2	60	Deceleration of jog motion
5	205	RPM	100	Speed of motor operation

- The acceleration (register 75), deceleration (register 76), and speed (register 205) can be dynamically changed during the operation of the motor, and the driver will immediately respond to these set values.
- ◆ The direction signal can be switched during the operation of the motor. At this time, the motor will slow down and stop at the deceleration set in register 76, and then accelerate in the opposite direction to the set speed.

Under the above register settings, connecting 24V to the COM port and controlling the status of PUL-, DIR-, EN- can control the operation of the motor:

PUL- level	DIR- level	EN- level	Motor status
1	1	0V	Offline
0V	24V		Forward
0V	0V	241/	Reverse
24V	24V	24V	Not run
24V	0V		Not run

6.4. Preset IO Control Mode 2: Forward Rotation+Reverse Rotation

The TXXS series products can control the operation of the motor using two IN ports through this mode. One IN terminal is used to control the start/stop of the motor, and the other IN terminal is used to control the direction of operation of the motor. The specific settings are as follows:

Step	Register address	Unit	Value	Parameter Description
1	17		0	Command mode setting register, set the source of pulse commands for the driver 0: Internal pulse command 1: External pulse command
2	20		3	Preset application selection for internal pulse mode 0: Communication control: responds to instructions from register 18 1: Reserved, do not use 2: Preset IO control mode 1: start stop + direction 3: Preset IO control mode 2: forward rotation + reverse rotation 4: Preset IO control mode 3: speed table 5: Preset IO control mode 4: position table
	60		39	PUL- port (IN1) is set to "7- jog forward/start stop" and normally open; Set to 7 when normally closed.
3	61		40	DIR- port (IN2) is set to "8- jog reversel/direction" and normally open; Set to 8 when normally closed.
4	75	R/S^2	60	Acceleration of jog motion
4	76	R/S^2	60	Deceleration of jog motion
5	205	RPM	100	Speed of motor operation

- ◆ The acceleration (register 75), deceleration (register 76), and speed (register 205) can be dynamically changed during the operation of the motor, and the driver will immediately respond to these set values.
- ◆ The direction signal can be switched during the operation of the motor. At this time, the motor will slow down and stop at the deceleration set in register 76, and then accelerate in the opposite direction to the set speed.

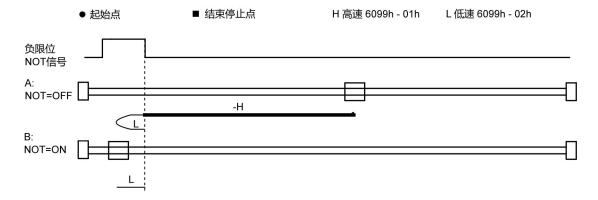
Under the above register settings, connecting 24V to the COM port and controlling the status of PUL-, DIR-, EN- can control the operation of the motor:

PUL- Level	DIR- Level	EN- Level	Motor status
1	1	0V	Offline
0V	24V		Forward
24V	0V	0.07	Reverse
24V	24V	.V 24V	
0V	0V		Not run

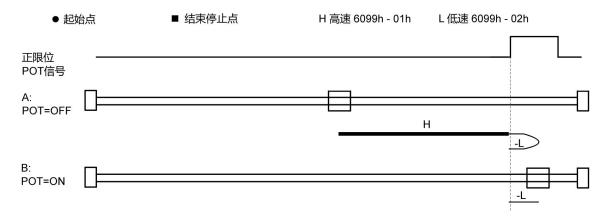
6.5. Preset IO Control Mode 3: Speed Table Mode

The TxxS series products can control up to 8 speeds through up to 3 IOs. Usually, the first gear speed is set to 0, indicating that the motor stops when there is no signal input. The relevant register settings are as follows:

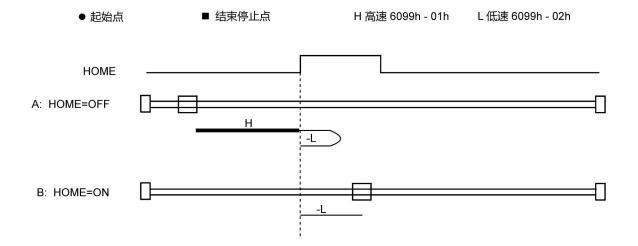
Step	Register address	Unit	Value	Parameter Description
1	17		0	Command mode setting register, set the source of pulse commands for the driver 0: Internal pulse command 1: External pulse command
2	20		4	Preset application selection for internal pulse mode 0: Communication control: responds to instructions from register 18 1: Reserved, do not use 2: Preset IO control mode 1: start stop + direction 3: Preset IO control mode 2: forward rotation + reverse rotation 4: Preset IO control mode 3: speed table 5: Preset IO control mode 4: position table
3	60		46	PUL- port (IN1) is set to "14- Multi segment speed 0" and normally open; Set to 14 when normally closed.

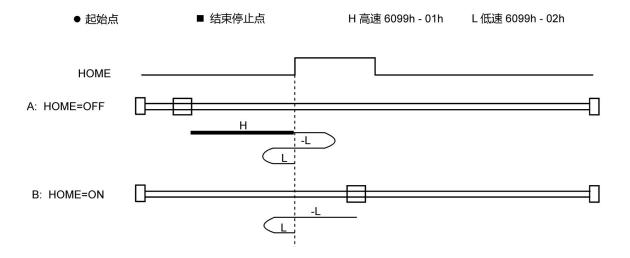

	61		47	DIR- port (IN2) is set to "15- Multi-segment Speed 1" and normally open; Set to 15 when normally closed.
	62		48	EN- port (IN3) is set to "16- Multi-segment Speed 2" and normally open; Set to 16 when normally closed.
4	75	R/S^2	60	Acceleration of jog motion
4	76	R/S^2	60	Deceleration of jog motion
	205	RPM	0	Speed table 1
	206		200	Speed table 2
	207		-200	Speed table 3
_	208		300	Speed table 4
5	209		-300	Speed table 5
	210		400	Speed table 6
	211		-400	Speed table 7
	212		500	Speed table 8

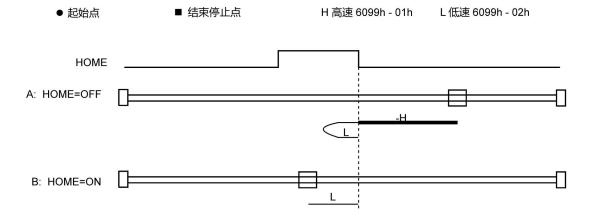
◆ The value of the speedometer register is signed 16-bit data, which can be used to achieve forward and reverse operation of the motor by setting the positive and negative values of the speed.

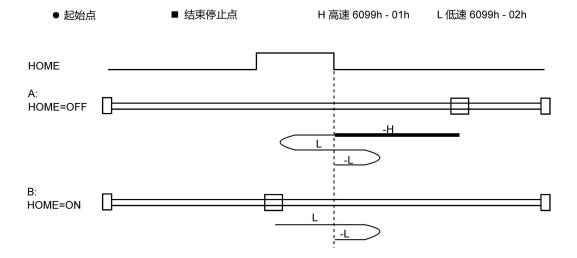

6.6. Homing Method

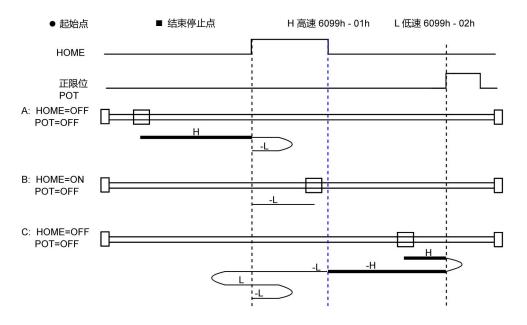
The TxxS series closed-loop stepper driver products have three working modes: power on automatic homing, communication triggered homing, and IO triggered homing. They support the 17~30 and 35 homing modes defined in CANOPEN. The specific process of the homing method is described below.

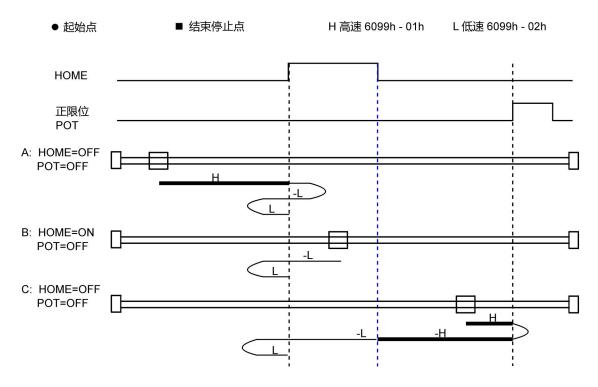

6.6.1. Method 17

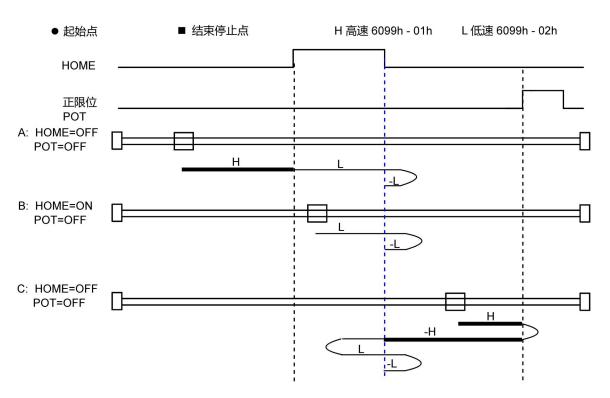

6.6.2. Method 18

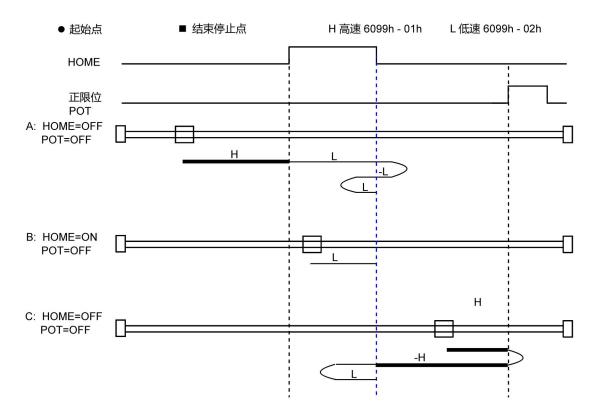

6.6.3. Method 19

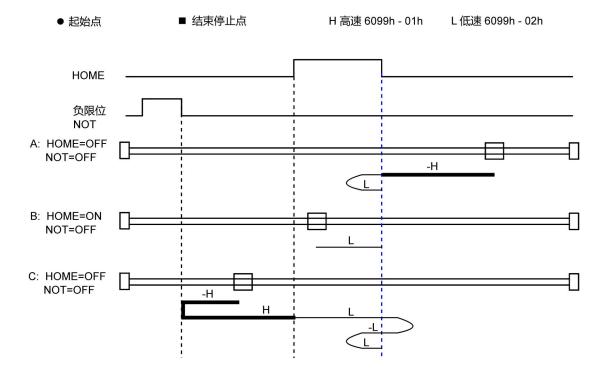

6.6.4. Method 20

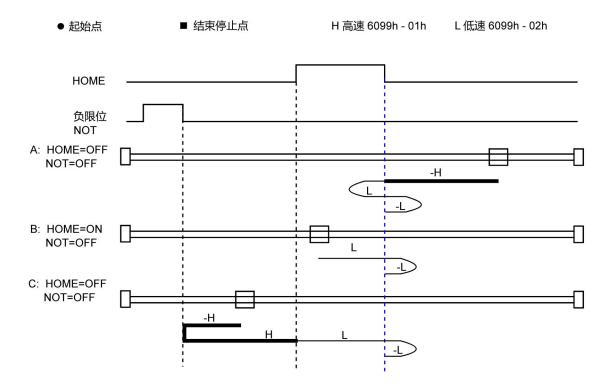

6.6.5. Method 21

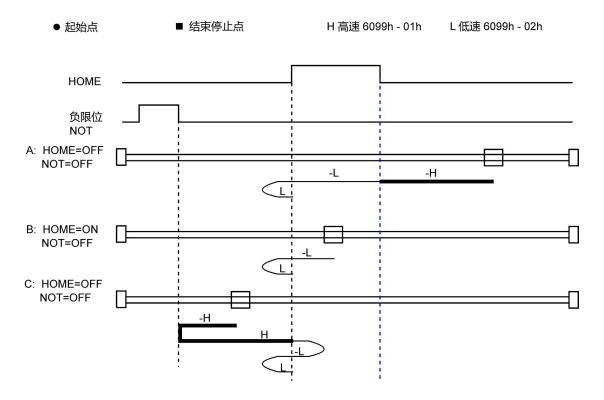

6.6.6. Method 22

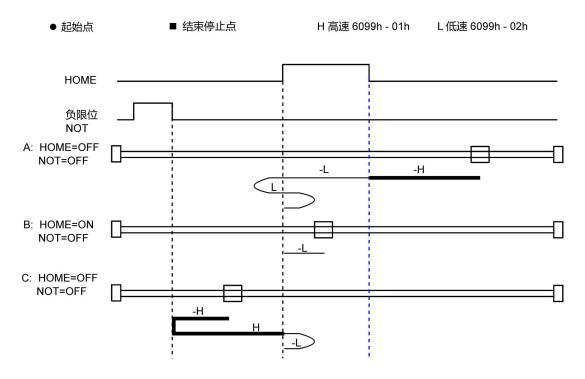

6.6.7. Method 23

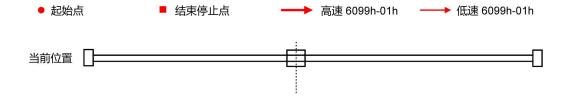

6.6.8. Method 24


6.6.9. Method 25


6.6.10. Method 26


6.6.11. Method 27


6.6.12. Method 28


6.6.13. Method 29

6.6.14. Method 30

6.6.15. Method 35

Appendix A Function Code Message Format

1. Function 03: Read and hold register

Query message:

QUERY	Example(Hex)
Field Name	
Slave address	01
Function code	03
Start address, high 8bit	00
Start address, low 8-bit	00
Data length, high 8bit	00
Data length, low 8-bit	05
CRC check, low 8-bit	85
CRC check, high 8-bit	C9

Response message:

RESPONSE	Example(Hex)
Field Name	
Slave address	01
Function code	03
Number of bytes returned	0A
Data, high (Register 40001)	00
Data, low (Register 40001)	00
Data, high (Register 40002)	00
Data, low (Register 40002)	01
Data, high (Register 40003)	00
Data, low (Register 40003)	00
Data, high (Register 40004)	00
Data, low (Register 40004)	03
Data, high (Register 40005)	FF
Data, low (Register 40005)	FF
CRC check, low 8-bit	C5
CRC check, high 8-bit	C6

2. Function 06: write to a single register

Query message: 01 06 00 12 00 00 29 CF

QUERY	Example(Hex)
Field Name	
Slave address	01
Function code	06
Address, high 8-bit	00
Address, low 8-bit	12
Data, high 8-bit	00
Data, low 8-bit	00
CRC check, low 8-bit	29
CRC check, high 8-bit	CF

Response message:

QUERY	Example(Hex)
Field Name	
Slave address	01
Function code	06
Address, high 8-bit	00
Address, low 8-bit	12
Data, high 8-bit	00
Data, low 8-bit	00
CRC check, low 8-bit	29
CRC check, high 8-bit	CF

3. Function 16(10 HEX): Write to multiple registers

Query message: 01 10 00 4B 00 04 08 00 64 00 64 02 58 01 F4 86 EC

QUERY	Example(Hex)
Field Name	
Slave address	01
Function code	10
Start address, high 8-bit	00
Start address, low 8-bit	4B
Data length, high 8-bit	00
Data length, low 8-bit	04
Number of bytes	08
Data high, (Register 40076)	00
Data, low (Register 40076)	64
Data, high (Register 40077)	00
Data, low (Register 40077)	64
Data, high (Register 40078)	02
Data, low (Register 40078)	58
Data, high (Register 40079)	01
Data, low (Register 40079)	F4
CRC check, low 8-bit	86
CRC check, high 8-bit	EC

Response message:

QUERY	Example(Hex)
Field Name	
Slave address	01
Function code	10
Start address, high 8-bit	00
Start address, low 8-bit	4B
Data length, high 8-bit	00
Data length, low 8-bit	04
CRC check, low 8-bit	B1
CRC check, high 8-bit	DC

Appendix B: Modbus/RTU Abnormal Response and Code

Response and code of NT60 when communication is abnormal

// exception code

#define ILLEGAL_FUNCTION 0x01

#define ILLEGAL_DATA_ADD 0x02

#define ILLEGAL_DATA_VAL 0x03

#define DEVICEFAIL 0x04

Appendix C: Modbus/RTU 16-bit CRC Check Routine

The CRC routine is written using the C language specification, making it easy for users to port to various platforms. The CRC_Checksum.c file contains two functions for calculating CRC.

Using computational CRC method:

```
unsigned short CalcCRCbyAlgorithm(unsigned char* pDataBuffer, unsigned long
usDataLen)
   {
       /* Use the Modbus algorithm as detailed in the Watlow comms guide */
       const unsigned short POLYNOMIAL = 0xA001;
       unsigned short wCrc;
       int iByte, iBit;
       /* Initialize CRC */
       wCrc = 0xFFFF;
       for (iByte = 0; iByte < usDataLen; iByte++)</pre>
       {
           /* Exclusive-OR the byte with the CRC */
           wCrc ^= *(pDataBuffer + iByte);
           /* Loop through all 8 data bits */
           for (iBit = 0; iBit <= 7; iBit++)
           {
               /* If the LSB is 1, shift the CRC and XOR the polynomial mask with the
CRC */
               /* Note - the bit test is performed before the rotation, so can't move the <<
here */
               if (wCrc & 0x0001)
               {
                   wCrc >>= 1;
                   wCrc ^= POLYNOMIAL;
               }
               else
```

```
{
                 /* Just rotate it */
                 wCrc >>= 1;
              }
          }
      }
       return wCrc;
   }
CRC is calculated using table lookup:
   /* Table Of CRC Values */
   const unsigned short TABLE CRC16[] =
   {
       0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
       0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
       0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
       0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
       0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
       0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
       0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
       0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
       0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
       0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
       0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
       0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
       0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
       0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
       0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
       0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
       0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
       0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
       0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
       0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
```

0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,

```
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
   0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
   0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
   0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
   0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
   0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
   0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
   0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
unsigned short CalcCRC_TAB(unsigned char* pDataBuffer, unsigned long usDataLen)
{
   unsigned char nTemp;
   unsigned short wCRCWord = 0xFFFF;
   while (usDataLen--)
   {
       nTemp = wCRCWord ^ *(pDataBuffer++);
       wCRCWord >>= 8;
       wCRCWord ^= TABLE_CRC16[nTemp];
   }
   return wCRCWord;
}
```